If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
The sum of $n$ terms of an $A P$ is given by
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$
Where $a$ is the first term and $d$ is the common difference Given that $S_{p}=q$ and $S_{q}=p$
$\Rightarrow \mathrm{S}_{\mathrm{p}}=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d})$
We know $S_{p}=q$
$\Rightarrow \mathrm{q}=\frac{\mathrm{p}}{2}(2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d})$
On rearranging we get
$\Rightarrow \frac{2 q}{p}=2 a+(p-1) d \ldots$ (i)
$\Rightarrow S_{\mathrm{q}}=\frac{\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{q}-1) \mathrm{d})$
Again we have $S_{q}=p$
$\Rightarrow \mathrm{p}=\frac{\mathrm{q}}{2}(2 \mathrm{a}+(\mathrm{q}-1) \mathrm{d})$
On rearranging we get
$\Rightarrow \frac{2 p}{q}=2 a+(q-1) d \ldots$ (ii)
Subtract (i) from (ii) that is (ii) - (i)
$\Rightarrow \frac{2 p}{q}-\frac{2 q}{p}=(q-1) d-(p-1) d$
Subtract (i) from (ii) that is (ii) - (i)
$\Rightarrow \frac{2 p}{q}-\frac{2 q}{p}=(q-1) d-(p-1) d$
On simplifying we get
$\Rightarrow 2 \frac{p^{2}-q^{2}}{p q}=(q-1-p+1) d$
Using $a^{2}-b^{2}=(a+b)(a-b)$ formula we get
$\Rightarrow 2 \frac{(p+q)(p-q)}{p q}=(q-p) d$
Computing and simplifying we get
$\Rightarrow 2 \frac{-(p+q)(q-p)}{p q}=(q-p) d$
$\Rightarrow-2 \frac{(\mathrm{p}+\mathrm{q})}{\mathrm{pq}}=\mathrm{d}$ $\ldots$ (iii)
We have to show that $S_{p+q}=-(p+q)$
$S_{p+q}=\frac{p+q}{2}(2 a+(p+q-1) d)$
Above equation can be written as
$=\frac{p}{2}(2 a+(p+q-1) d)+\frac{q}{2}(2 a+(p+q-1) d)$
$=\frac{p}{2}(2 a+(p-1) d+q d)+\frac{q}{2}(2 a+(q-1) d+p d)$
$=\frac{p}{2}(2 a+(p-1) d)+\frac{p q d}{2}+\frac{q}{2}(2 a+(q-1) d)+\frac{q p d}{2}$
Using $(\mathrm{m})$ and $(\mathrm{n})$
$\Rightarrow S_{p+q}=S_{p}+S_{q}+p q d$
$=q+p+p q d$
Substitute d from (iii)
$\Rightarrow S_{p+q}=q+p+p q\left(-2 \frac{(p+q)}{p q}\right)$
$=(p+q)-2(p+q)$
$=-(p+q)$
Now we have to find sum of $p-q$ terms that is $S_{p-q}$
$\Rightarrow S_{p-q}=\frac{p-q}{2}(2 a+(p-q-1) d)$
$=\frac{p}{2}(2 a+(p-q-1) d)-\frac{q}{2}(2 a+(p-q-1) d)$
The above equation can be written as
$=\frac{p}{2}(2 a+(p-1) d-q d)-\frac{q}{2}(2 a+(p-1) d-q d)$
$=\frac{p}{2}(2 a+(p-q-1) d)-\frac{q}{2}(2 a+(p-q-1) d)$
The above equation can be written as
$=\frac{p}{2}(2 a+(p-1) d-q d)-\frac{q}{2}(2 a+(p-1) d-q d)$
$=\frac{p}{2}(2 a+(p-1) d)-\frac{p q d}{2}-\frac{q}{2}(2 a+(p-1) d)+\frac{q^{2} d}{2}$
Using $(\mathrm{m})$ and $(\mathrm{n})$
$=\mathrm{S}_{\mathrm{p}}-\frac{\mathrm{pqd}}{2}-\frac{\mathrm{q}}{2} \frac{2 \mathrm{~S}_{\mathrm{p}}}{\mathrm{p}}+\frac{\mathrm{q}^{2} \mathrm{~d}}{2}$
Substituting the value of $S_{p}=q$ we get
$=\mathrm{q}-\frac{\mathrm{pqd}}{2}-\frac{\mathrm{q}^{2}}{\mathrm{p}}+\frac{\mathrm{q}^{2} \mathrm{~d}}{2}$
$=q-\frac{q^{2}}{p}+\left(\frac{q^{2}-q p}{2}\right) d$
Substitute d from (iii)
$=q-\frac{q^{2}}{p}+\left(\frac{q^{2}-q p}{2}\right)\left(-2 \frac{(p+q)}{p q}\right)$
Simplifying and computing we get
$=\frac{q p-q^{2}}{p}-\left(q^{2}-q p\right)\left(\frac{p+q}{p q}\right)$
$=\frac{q p-q^{2}}{p}+\left(q p-q^{2}\right)\left(\frac{p+q}{p q}\right)$
$=\frac{q p-q^{2}}{p}+\left(q p-q^{2}\right)\left(\frac{1}{p}+\frac{1}{q}\right)$
$=\frac{q p-q^{2}}{p}+\frac{\left(q p-q^{2}\right)}{p}+\frac{\left(q p-q^{2}\right)}{q}$
$\Rightarrow S_{p-q}=2 \frac{q(p-q)}{p}+p-q$
Hence sum of $p-q$ terms is $2 \frac{q(p-q)}{p}+p-q$