Question:
If the sum of n terms of an AP is $\left\{n P+\frac{1}{2} n(n-1) Q\right\}$ where P and Q are constants then find the common difference.
Solution:
Let the first term be a and common difference be d
To Find: d
Given: Sum of $n$ terms of $A P=n P+\frac{n}{2}(n-1) Q$
$\Rightarrow \frac{n}{2}[2 a+(n-1) d]=n P+\frac{n}{2}(n-1) Q$
$\Rightarrow 2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=2 \mathrm{P}+(\mathrm{n}-1) \mathrm{Q}$
$\Rightarrow 2(\mathrm{a}-\mathrm{P})=(\mathrm{n}-1)(\mathrm{Q}-\mathrm{d})$
Put n = 1 to get the first term as sum of 1 term of an AP is the term itself.
$\Rightarrow P=a$
$\Rightarrow(n-1)(Q-d)=0$
For $n$ not equal to $1 Q=d$
Common difference is $Q$.