Question:
If the sum of n terms of an A.P. is Sn = 3n2 + 5n. Write its common difference.
Solution:
Here, we are given,
$S_{n}=3 n^{2}+5 n$
Let us take the first term as a and the common difference as d.
Now, as we know,
$a_{n}=S_{n}-S_{n-1}$
So, we get,
$a_{n}=\left(3 n^{2}+5 n\right)-\left[3(n-1)^{2}+5(n-1)\right]$
$=3 n^{2}+5 n-\left[3\left(n^{2}+1-2 n\right)+5 n-5\right]$ $\left[\right.$ Using $\left.(a-b)^{2}=a^{2}+b^{2}-a b\right]$
$=3 n^{2}+5 n-\left(3 n^{2}+3-6 n+5 n-5\right)$
$=3 n^{2}+5 n-3 n^{2}-3+6 n-5 n+5$
$=6 n+2$$\ldots(1)$
Also,
$a_{n}=a+(n-1) d$
$=a+n d-d$
$=n d+(a-d)$ ............(2)
On comparing the terms containing n in (1) and (2), we get,
$d n=6 n$
$d=6$
Therefore, the common difference is $d=6$.