Question:
If the sum of first $\rho$ term of an A.P. is $a p^{2}+b p$, find its common difference.
Solution:
Here, we are given,
$S_{p}=a p^{2}+b p$
Let us take the first term as a’ and the common difference as d.
Now, as we know,
$a_{p}=S_{p}-S_{p-1}$
So, we get,
$a_{p}=\left(a p^{2}+b p\right)-\left[a(p-1)^{2}+b(p-1)\right]$
$=a p^{2}+b p-\left[a\left(p^{2}+1-2 p\right)+b p-b\right]$ $\left[\right.$ Using $\left.(a-b)^{2}=a^{2}+b^{2}-a b\right]$
$=a p^{2}+b p-\left(a p^{2}+a-2 a p+b p-b\right)$
$=a p^{2}+b p-a p^{2}-a+2 a p-b p+b$
$=2 a p-a+b$$\ldots(1)$
Also,
$a_{p}=a^{\prime}+(p-1) d$
$=a^{\prime}+p d-d$
$=p d+\left(a^{\prime}-d\right)$$\ldots(2)$
On comparing the terms containing p in (1) and (2), we get,
$d p=2 a p$
$d=2 a$
Therefore, the common difference is $d=2 a$