If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers,
Question:
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
(a) $\frac{1}{n}$
(b) $\frac{n-1}{n}$
(c) $\frac{n+1}{2 n}$
(d) $\frac{n+1}{n}$
Solution:
(d) $\frac{n+1}{n}$
Given:
Sum of the even natural numbers = k
$\frac{n}{2}\{2 a+(n-1) d\}=k \times \frac{n}{2}\{2 a+(n-1) d\}$
$\Rightarrow\{2 \times 2+(n-1) 2\}=k \times\{2 \times 1+(n-1) 2\}$
$\Rightarrow \frac{4+(n-1) 2}{2+(n-1) 2}=k$
$\Rightarrow \frac{n+1}{n}=k$