Question:
If the sum of a certain number of terms of the AP 27, 24, 21, 18, …. is –30, find the last term.
Solution:
To Find: Last term of the AP.
Let the number of terms be n.
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow \frac{n}{2}[54+(n-1)(-3)]=-30$
$\Rightarrow \mathrm{n}[54-3 \mathrm{n}+3]=-60$
$\Rightarrow 3 n^{2}-57 n-60=0$
$\Rightarrow n=\frac{57 \pm 63}{6}$
Either n = 20 or n = - 1 (n cannot be negative)
Therefore n = 20
Also,
$S=\frac{n}{2}(a+l)$ where l is the last term.
$\Rightarrow-30=\frac{20}{2}(27+l)$
$\Rightarrow-30=270+101$
$\Rightarrow-\frac{300}{10}=l$
$\Rightarrow 1=-30$
The last term is - 30.