Question.
If the sum of 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of n terms.
If the sum of 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of n terms.
Solution:
$\mathrm{S}_{7}=49$
$\Rightarrow \frac{7}{2}\{2 \mathrm{a}+6 \mathrm{~d}\}=49 \Rightarrow \mathrm{a}+3 \mathrm{~d}=7 \ldots(1)$
$\mathrm{S}_{17}=289$
$\Rightarrow \frac{17}{2}\{2 a+16 d\}=289 \Rightarrow a+8 d=17 \ldots(2)$
Subtracting (1) from (2), we get
$5 \mathrm{~d}=17-7=10$
$\Rightarrow d=2$
From (1),
a + 3 × 2 = 7
$\Rightarrow \mathrm{a}=1$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}\{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}$
$=\frac{n}{2}\{2 \times 1+(n-1) \times 2\}$
$=\frac{n}{2}\{2 n\}=n^{2}$
Hence, $S_{n}=n^{2}$
$\mathrm{S}_{7}=49$
$\Rightarrow \frac{7}{2}\{2 \mathrm{a}+6 \mathrm{~d}\}=49 \Rightarrow \mathrm{a}+3 \mathrm{~d}=7 \ldots(1)$
$\mathrm{S}_{17}=289$
$\Rightarrow \frac{17}{2}\{2 a+16 d\}=289 \Rightarrow a+8 d=17 \ldots(2)$
Subtracting (1) from (2), we get
$5 \mathrm{~d}=17-7=10$
$\Rightarrow d=2$
From (1),
a + 3 × 2 = 7
$\Rightarrow \mathrm{a}=1$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}\{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}$
$=\frac{n}{2}\{2 \times 1+(n-1) \times 2\}$
$=\frac{n}{2}\{2 n\}=n^{2}$
Hence, $S_{n}=n^{2}$