If the sum of 7 terms of an A.P. is 49 and that of 17 terms is 289, find the sum of n terms.
In the given problem, we need to find the sum of n terms of an A.P. Let us take the first term as a and the common difference as d.
Here, we are given that,
$S_{7}=49$..............(1)
$S_{17}=289$.............(2)
So, as we know the formula for the sum of n terms of an A.P. is given by,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Where; a = first term for the given A.P.
d = common difference of the given A.P.
n = number of terms
So, using the formula for n = 7, we get,
$S_{7}=\frac{7}{2}[2(a)+(7-1)(d)]$
$49=\left(\frac{7}{2}\right)[2 a+(6)(d)]$ (Using 1)
$49=\frac{14 a+42 d}{2}$
$49=7 a+21 d$
Further simplifying for a, we get,
$a=\frac{49-21 d}{7}$
$a=7-3 d$ ...............(3)
Also using the formula for $n=17$ we get
$S_{17}=\frac{17}{2}[2(a)+(17-1)(d)]$
$289=\left(\frac{17}{2}\right)[2 a+(16)(d)]$ (Using 2)
$289=\frac{(17)(2) a+(17)(16) d}{2}$
$289=17 a+136 d$
Further simplifying for a, we get,
$a=\frac{289-136 d}{17}$
$a=17-8 d$ ...........(4)
Subtracting (3) from (4), we get,
$a-a=(17-8 d)-(7-3 d)$
$0=17-8 d-7+3 d$
$0=10-5 d$
$5 d=10$
$d=2$
Now, to find a, we substitute the value of d in (3),
$a=7-3(2)$
$a=7-6$
$a=1$
Now, using the formula for the sum of n terms of an A.P., we get,
$S_{n}=\frac{n}{2}[2(1)+(n-1)(2)]$
$=\frac{n}{2}[2+2 n-2]$
$=\left(\frac{n}{2}\right)(2 n)$
$=n^{2}$
Therefore, the sum of first $n$ terms for the given A.P. is $S_{n}=n^{2}$.