If $a x+\frac{b}{x} \geq c$ for all positive $x$ where $a, b,>0$, then
(a) $a b<\frac{c^{2}}{4}$
(b) $a b \geq \frac{c^{2}}{4}$
(c) $a b \geq \frac{c}{4}$
$(\mathrm{b}) a b \geq \frac{c^{2}}{4}$
Given : $a x+\frac{b}{x} \geq c$
Minimum value of $a x+\frac{b}{x}=c$
Now,
$f(x)=a x+\frac{b}{x}$
$\Rightarrow f^{\prime}(x)=a-\frac{b}{x^{2}}$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow a-\frac{b}{x^{2}}=0$
$\Rightarrow a x^{2}-b=0$
$\Rightarrow a x^{2}=b$
$\Rightarrow x^{2}=\frac{b}{a}$
$\Rightarrow x=\pm \frac{\sqrt{b}}{\sqrt{a}}$
$f^{\prime \prime}(x)=\frac{2 b}{x^{3}}$
$\Rightarrow f^{\prime \prime}(x)=\frac{2 b}{\left(\frac{\sqrt{b}}{\sqrt{a}}\right)^{3}}$
$\Rightarrow f^{\prime \prime}(x)=\frac{2 b(a)^{\frac{3}{2}}}{(b) \frac{3}{2}}>0$
So, $x=\frac{\sqrt{b}}{\sqrt{a}}$ is a local minima.
$\therefore f\left(\frac{\sqrt{b}}{\sqrt{a}}\right)=a\left(\frac{\sqrt{b}}{\sqrt{a}}\right)+\frac{b}{\left(\frac{\sqrt{b}}{\sqrt{a}}\right)} \geq c$
$=\sqrt{a} \sqrt{a}\left(\frac{\sqrt{b}}{\sqrt{a}}\right)+\frac{\sqrt{b} \sqrt{b}}{\left(\frac{\sqrt{b}}{\sqrt{a}}\right)} \geq c$
$=\sqrt{a b}+\sqrt{a b} \geq c$
$\Rightarrow 2 \sqrt{a b} \geq c$
$\Rightarrow \frac{c}{2} \leq \sqrt{a b}$
$\Rightarrow \frac{c^{2}}{4} \leq a b$