If $(\mathrm{x})=\frac{1}{4 x 2+2 x+1}$, then its maximum value is
(a) $\frac{4}{3}$
(b) $\frac{2}{3}$
(c) 1
(d) $\frac{3}{4}$
(a) $\frac{4}{3}$
Maximum value of $\frac{1}{4 x^{2}+2 x+1}=$ Minimum value of $4 x^{2}+2 x+1$
Now,
$f(x)=4 x^{2}+2 x+1$
$\Rightarrow f^{\prime}(x)=8 x+2$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow 8 x+2=0$
$\Rightarrow 8 x=-2$
$\Rightarrow x=\frac{-1}{4}$
Now,
$f^{\prime \prime}(x)=8$
$\Rightarrow f^{\prime \prime}(1)=8>0$
So, $x=\frac{-1}{4}$ is a local minima.
Thus, $\frac{1}{4 x^{2}+2 x+1}$ is maximum at $x=\frac{-1}{4}$.
$\Rightarrow$ Maximum value of $\frac{1}{4 x^{2}+2 x+1}=\frac{1}{4\left(\frac{-1}{4}\right)^{2}+2\left(\frac{-1}{4}\right)+1}$
$=\frac{1}{\frac{4}{16}-\frac{1}{2}+1}=\frac{16}{12}=\frac{4}{3}$