Question:
$f(x)=x^{3}-3 x$
Solution:
Given : $f(x)=x^{3}-3 x$
$\Rightarrow f^{\prime}(x)=3 x^{2}-3$
For a local maximum or a local minimum, we must have
$f^{\prime}(x)=0$
$\Rightarrow 3 x^{2}-3=0$
$\Rightarrow x^{2}-1=0$
$\Rightarrow x=\pm 1$
Since $f^{\prime}(x)$ changes from negative to positive as $x$ increases through $1, x=1$ is the point of local minima. The local minimum value of $f(x)$ at $x=1$ is given by
$(1)^{3}-3(1)=-2$
Since $f^{\prime}(x)$ changes from positive to negative when $x$ increases through $-1, x=-1$ is the point of local maxima.
The local maximum value of $f(x)$ at $x=-1$ is given by
$(-1)^{3}-3(-1)=2$