Question:
If $x+y=8$, then the maximum value of $x y$ is
(a) 8
(b) 16
(c) 20
(d) 24
Solution:
(b) 16
Given : $x+y=8$
$\Rightarrow y=8-x$ ....(1)
Let $f(x)$ be $x y$.
$\Rightarrow f(x)=x(8-x)$ $[$ From eq. $(1)]$
$\Rightarrow f^{\prime}(x)=8-2 x$
For a local maxima or a local minima, we must have
$f^{\prime}(x)=0$
$\Rightarrow 8-2 x=0$
$\Rightarrow 8=2 x$
$\Rightarrow x=4$
$\Rightarrow y=8-4=4$ $[$ From eq. $(1)]$
Now,
$f^{\prime \prime}(x)=-2$
$\Rightarrow f^{\prime \prime}(4)=-2<0$
So, $x=4$ is a local maxima.
Hence, the local maximum value is given by
$f(4)=4 \times 4=16$