If $y=\left(\tan ^{-1} x\right)^{2}$, then prove that $(1-x 2)^{2} y_{2}+2 x\left(1+x^{2}\right) y_{1}=2$
Formula: -
(i) $\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{y}_{1}$ and $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\mathrm{y}_{2}$
(ii) $\frac{\mathrm{d}\left(\tan ^{-1} \mathrm{x}\right)}{\mathrm{dx}}=\frac{1}{1+\mathrm{x}^{2}}$
(iii) $\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{\mathrm{n}}=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
Given: -
$Y=\left(\tan ^{-1} x\right)^{2}$
Then
$\frac{d y}{d x}=\frac{d\left(\tan ^{-1} x\right)^{2}}{d x}$
Using formula (ii)\&(i)
$\mathrm{y}_{1}=2 \tan ^{-1} \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)$
$\Rightarrow \mathrm{y}_{1}=2 \tan ^{-1} \mathrm{x} \cdot \frac{1}{1+\mathrm{x}^{2}}$
Again differentiating with respect to $x$ on both the sides, we obtain
$\left(1+x^{2}\right) y_{2}+2 x y_{1}=2\left(\frac{1}{1+x^{2}}\right)$ using formula(i)\&(iii)
$\Rightarrow\left(1+x^{2}\right)^{2} y_{2}+2 x\left(1+x^{2}\right) y_{1}=2$
Hence proved.