If $y=e^{2 x}(a x+b)$, show that $y_{2}-4 y_{1}+4 y=0 .$
Note: $y_{2}$ represents second order derivative i.e. $\frac{d^{2} y}{d x^{2}}$ and $y_{1}=d y / d x$
Given,
$y=e^{2 x}(a x+b) \ldots \ldots$ equation 1
to prove: $y_{2}-4 y_{1}+4 y=0$
We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.
Let's find $\frac{d^{2} y}{d x^{2}}$
As, $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)$
So, lets first find $d y / d x$
$\because y=e^{2 x}(a x+b)$
Using product rule to find $d y / d x$ :
$\frac{d y}{d x}=e^{2 x} \frac{d y}{d x}(a x+b)+(a x+b) \frac{d}{d x} e^{2 x}$
$\frac{d y}{d x}=a e^{2 x}+2(a x+b) e^{2 x}$
$\frac{d y}{d x}=e^{2 x}(a+2 a x+2 b) \ldots \ldots .$ equation 2
Again differentiating w.r.t $x$ using product rule:
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\mathrm{e}^{2 \mathrm{x}} \frac{\mathrm{dy}}{\mathrm{dx}}(\mathrm{a}+2 \mathrm{ax}+2 \mathrm{~b})+(\mathrm{a}+2 \mathrm{ax}+2 \mathrm{~b}) \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{e}^{2 \mathrm{x}}$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=2 \mathrm{ae}^{2 \mathrm{x}}+2(\mathrm{a}+2 \mathrm{ax}+2 \mathrm{~b}) \mathrm{e}^{2 \mathrm{x}} \ldots \ldots . .$ equation 3
In order to prove the expression try to get the required form:
Subtracting $4^{*}$ equation 2 from equation 3 :
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}-4 \frac{\mathrm{dy}}{\mathrm{dx}}=2 \mathrm{a} \mathrm{e}^{2 \mathrm{x}}+2(\mathrm{a}+2 \mathrm{ax}+2 \mathrm{~b}) \mathrm{e}^{2 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}(\mathrm{a}+2 \mathrm{ax}+2 \mathrm{~b})$
$\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}=2 a e^{2 x}-2 e^{2 x}(a+2 a x+2 b)$
$\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}=-4 e^{2 x}(a x+b)$
Using equation 1:
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}-4 \frac{\mathrm{dy}}{\mathrm{dx}}=-4 \mathrm{y}$
$\therefore y_{2}-4 y_{1}+4 y=0 \ldots \ldots \ldots$ proved