If $x=\cos t+\log \tan \frac{t}{2}, y=\sin t$, then find the value of $\frac{d^{2} y}{d t^{2}}$ and $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{4}$.
Formula: -
(i) $\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{y}_{1}$ and $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\mathrm{y}_{2}$
(ii) $\frac{\mathrm{d}}{\mathrm{dx}} \cos \mathrm{x}=\sin \mathrm{x}$
(iii) $\frac{\mathrm{d}}{\mathrm{dx}} \sin \mathrm{x}=-\cos \mathrm{x}$
(iv) $\frac{\mathrm{d}}{\mathrm{dx}} \log \mathrm{x}=\frac{1}{\mathrm{x}}$
(v) $\frac{d}{d x} \tan x=\sec ^{2} x$
(vi) $\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{\mathrm{n}}=\mathrm{nx}^{\mathrm{n}-1}$
(v) chain rule $\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{d} \text { (wou) }}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{\mathrm{dw}}{\mathrm{ds}} \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \cdot \frac{\mathrm{dt}}{\mathrm{dx}}$
(vi) parameteric forms $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{\mathrm{dy}}{\mathrm{dt}}}{\frac{\mathrm{dx}}{\mathrm{dt}}}$
Given: -
$x=\cos t+\log \tan \frac{t}{2}, y=\sin t$
Differentiating with respect to $t$, we have
$\frac{\mathrm{dx}}{\mathrm{dt}}=-\sin \mathrm{t}+\frac{1}{\tan \frac{\mathrm{t}}{2}} \times \sec ^{2}\left(\frac{\mathrm{t}}{2}\right) \times \frac{1}{2}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=-\sin t+\frac{1}{\frac{\sin \left(\frac{\mathrm{t}}{2}\right)}{\cos \left(\frac{\mathrm{t}}{2}\right)}} \times \frac{1}{\cos ^{2} \frac{\mathrm{t}}{2}} \times \frac{1}{2}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=-\sin t+\frac{1}{2 \sin \left(\frac{\mathrm{t}}{2}\right) \cos \left(\frac{\mathrm{t}}{2}\right)}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=-\sin \mathrm{t}+\frac{1}{\sin \mathrm{t}}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{1-\sin ^{2} \mathrm{t}}{\sin \mathrm{t}}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\cos ^{2} \mathrm{t}}{\sin \mathrm{t}}$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=$ cost. cott
Now find the value of $\frac{\mathrm{dy}}{\mathrm{dt}}$
$\frac{\mathrm{dy}}{\mathrm{dt}}=\cos t$
Now
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=$ cost $\times \frac{1}{\text { cost. cott }}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\operatorname{tant}$
We have
$\frac{d y}{d t}=\cos t$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=-\sin t$
At $t=\frac{\pi}{4}$
$\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}\right)_{\mathrm{t}=\frac{\pi}{4}}=-\sin \left(\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)}{\frac{\mathrm{dx}}{\mathrm{dt}}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\frac{\mathrm{d}}{\mathrm{dt}}(\tan \mathrm{t})}{\operatorname{cost} \cdot \operatorname{cott}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\sec ^{2} \mathrm{t}}{\operatorname{cost} \cdot \operatorname{cott}}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{\sec ^{2} \mathrm{t}}{\cos ^{2} \mathrm{t}} \cdot \sin \mathrm{t}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\sec ^{4} t \times \sin t$
Now putting $t=\frac{\pi}{4}$
$\left(\frac{d^{2} y}{d x^{2}}\right)_{t=\frac{\pi}{4}}=\sec ^{4} \frac{\pi}{4} \cdot \sin \left(\frac{\pi}{4}\right)=2$