Question:
At $x=\frac{5 \pi}{6}, f(x)=2 \sin 3 x+3 \cos 3 x$ is
(a) 0
(b) maximum
(c) minimum
(d) none of these
Solution:
(d) none of these
Given: $f(x)=2 \sin 3 x+3 \cos 3 x$
$\Rightarrow f^{\prime}(x)=6 \cos 3 x-9 \sin 3 x$
For a local minima or a local maxima, we must have
$f^{\prime}(x)=0$
$\Rightarrow 6 \cos 3 x-9 \sin 3 x=0$
$\Rightarrow 6 \cos 3 x=9 \sin 3 x$'
$\Rightarrow \frac{\sin 3 x}{\cos 3 x}=\frac{2}{3}$
$\Rightarrow \tan 3 x=\frac{2}{3}$ ......(1)
At $x=\frac{5 \pi}{6}:$
$\tan 3 x=\tan \frac{5 \pi}{2}$
$\Rightarrow \tan 3 x=\tan \frac{\pi}{2}$
So, $\tan 3 x$ is not defined. $\left[\tan 3 \mathrm{x} \neq \frac{2}{3}\right.$ is not satisfying eq. (1) $]$
Thus, $x=\frac{5 \pi}{6}$ is not a critical point.