If the solution curve of the differential equation $\left(2 x-10 y^{3}\right) d y+y d x=0$, passes through the points $(0,1)$ and $(2, \beta)$, then $\beta$ is a root of the equation:
Correct Option: , 4
$\left(2 x-10 y^{3}\right) d y+y d x=0$
$\Rightarrow \frac{\mathrm{dx}}{\mathrm{dy}}+\left(\frac{2}{\mathrm{y}}\right) \mathrm{x}=10 \mathrm{y}^{2}$
I. F. $=e^{\int_{y}^{2} d y}=e^{2 \ln (y)}=y^{2}$
Solution of D.E. is
$\therefore \quad x \cdot y=\int\left(10 y^{2}\right) y^{2} \cdot d y$
$x y^{2}=\frac{10 y^{5}}{5}+C \Rightarrow x y^{2}=2 y^{5}+C$
It passes through $(0,1) \rightarrow 0=2+\mathrm{C} \Rightarrow \mathrm{C}=-2$
$\therefore$ Curve is $x y^{2}=2 y^{5}-2$
Now, it passes through $(2, \beta)$
$2 \beta^{2}=2 \beta^{5}-2 \Rightarrow \beta^{5}-\beta^{2}-1=0$
$\therefore \beta$ is root of an equation $y^{5}-y^{2}-1=0$