Question:
If the selling price of 10 pens is equal to cost price of 14 pens, find the gain percent.
Solution:
Let the cost price of one pen be Rs. C, and the selling price be Rs. S
Therefore, $10 \mathrm{~S}=14 \mathrm{C}$
$\mathrm{C}=\frac{10}{14} \mathrm{~S}$
However, the cost price is less than the selling price.
S. P. $=\left(\frac{100+\text { profit } \%}{100}\right)$ C.P
S $=\left(\frac{100+\text { profit } \%}{100}\right)$ C
$\frac{\text { S }}{\text { C }}=\left(\frac{100+\text { profit } \%}{100}\right)$
$\frac{14}{10}=\left(\frac{100+\text { profit } \%}{100}\right)$
$\frac{1400}{10}=100+$ profit $\%$
$140-100=$ profit $\%$
Profit $\%=40$
$=40 \%$
Therefore, the required profit percent is $40 \%$.