If the roots of the equations $a x^{2}+2 b x+c=0$ and $b x^{2}-2 \sqrt{a c} x+b=0$ are simultaneously real, then prove that $b^{2}=a c$.
The given equations are
$a x^{2}+2 b x+c=0 \ldots \ldots$ (1)
$b x^{2}-2 \sqrt{a c} x+b=0 \ldots \ldots$ (2)
Roots are simultaneously real
Then prove that $b^{2}=a c$.
Let $D_{1}$ and $D_{2}$ be the discriminants of equation (1) and (2) respectively,
Then,
$D_{1}=(2 b)^{2}-4 a c$
$=4 b^{2}-4 a c$
And
$D_{2}=(-2 \sqrt{a c})^{2}-4 \times b \times b$
$=4 a c-4 b^{2}$
Both the given equation will have real roots, if $D_{1} \geq 0$ and $D_{2} \geq 0$
$4 b^{2}-4 a c \geq 0$
$4 b^{2} \geq 4 a c$
$b^{2} \geq a c$......(3)
$4 a c-4 b^{2} \geq 0$
$4 a c \geq 4 b^{2}$
$a c \geq b^{2} \ldots \ldots(4)$
From equations (3) and (4) we get
$b^{2}=a c$
Hence, $b^{2}=a c$