If the roots of the equations $\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c) x+\left(b^{2}+c^{2}\right)=0$ are equal, then
(a) $2 b=a+c$
(b) $b^{2}=a c$
(c) $b=\frac{2 a c}{a+c}$
(d) $b=a c$
The given quadric equation is $\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c) x+b^{2}+c^{2}=0$, and roots are equal.
Here, $a=\left(a^{2}+b^{2}\right), b=-2 b(a+c)$ and, $c=b^{2}+c^{2}$
As we know that $D=b^{2}-4 a c$
Putting the value of $a=\left(a^{2}+b^{2}\right), b=-2 b(a+c)$ and, $c=b^{2}+c^{2}$
$=\{-2 b(a+c)\}^{2}-4 \times\left(a^{2}+b^{2}\right) \times\left(b^{2}+c^{2}\right)$
$=4 a^{2} b^{2}+4 b^{2} c^{2}+8 a b^{2} c-4\left(a^{2} b^{2}+a^{2} c^{2}+b^{4}+b^{2} c^{2}\right)$
$=+8 a b^{2} c-4 a^{2} c^{2}-4 b^{4}$
$=-4\left(a^{2} c^{2}+b^{4}-2 a b^{2} c\right)$
The given equation will have equal roots, if $D=0$
$-4\left(a^{2} c^{2}+b^{4}-2 a b^{2} c\right)=0$
$a^{2} c^{2}+b^{4}-2 a b^{2} c=0$
$\left(a c-b^{2}\right)^{2}=0$
$a c-b^{2}=0$
$a c=b^{2}$
Thus, the correct answer is (b)