If the roots of the equation $(b-c) x^{2}+(c-a) x+(a-b)=0$ are equal, then prove that $2 b=a+c$.
The given quadric equation is $(b-c) x^{2}+(c-a) x+(a-b)=0$, and roots are real
Then prove that $2 b=a+c$.
Here,
$a=(b-c), b=(c-a)$ and, $c=(a-b)$
As we know that $D=b^{2}-4 a c$
Putting the value of $a=(b-c), b=(c-a)$ and, $c=(a-b)$
$D=b^{2}-4 a c$
$=(c-a)^{2}-4 \times(b-c) \times(a-b)$
$=c^{2}-2 c a+a^{2}-4\left(a b-b^{2}-c a+b c\right)$
$=c^{2}-2 c a+a^{2}-4 a b+4 b^{2}+4 c a-4 b c$
$=c^{2}+2 c a+a^{2}-4 a b+4 b^{2}-4 b c$
$=a^{2}+4 b^{2}+c^{2}+2 c a-4 a b-4 b c$
As we know that $\left(a^{2}+4 b^{2}+c^{2}+2 c a-4 a b-4 b c\right)=(a+c-2 b)^{2}$
$D=(a+c-2 b)^{2}$
The given equation will have real roots, if $D=0$
$(a+c-2 b)^{2}=0$
Square root both side we get
$\sqrt{(a+c-2 b)^{2}}=0$
$a+c-2 b=0$
$a+c=2 b$
Hence $2 b=a+c$