If the radii of the circular ends of a bucket 28 cm high, are 28 cm and 7 cm, then find its capacity and total surface area.
We have,
Height, $h=28 \mathrm{~cm}$,
Radius of the upper end, $R=28 \mathrm{~cm}$ and
Radius of the lower end, $r=7 \mathrm{~cm}$
Also,
The slant height, $l=\sqrt{(R-r)^{2}+h^{2}}$
$=\sqrt{(28-7)^{2}+28^{2}}$
$=\sqrt{21^{2}+28^{2}}$
$=\sqrt{441+784}$
$=\sqrt{1225}$
$=35 \mathrm{~cm}$
Now,
Capacity of the bucket $=\frac{1}{3} \pi h\left(R^{2}+r^{2}+R r\right)$
$=\frac{1}{3} \times \frac{22}{7} \times 28 \times\left(28^{2}+7^{2}+28 \times 7\right)$
$=\frac{88}{3} \times(784+49+196)$
$=\frac{88}{3} \times 1029$
$=30184 \mathrm{~cm}^{3}$
Also,
Total surface area of the bucket $=\pi l(R+r)+\pi r^{2}$
$=\frac{22}{7} \times 35 \times(28+7)+\frac{22}{7} \times 7 \times 7$
$=110 \times(35)+154$
$=3850+154$
$=4004 \mathrm{~cm}^{2}$
Disclaimer: The answer of the total surface area given in the textbook is incorrect. The same has been corrected above.