If the pth term of an AP is q and its qth term is p then show that its (p + q)th term is zero.

Question:

If the pth term of an AP is q and its qth term is p then show that its (p + q)th term is zero.

Solution:

In the given AP, let the first term be a and the common difference be d.
Then Tn = a + (n - 1)d ​
⇒ Tp = a + (p - 1)d = q               ...(i)
     ​

 ⇒ Tq = a + (q - 1)d = p              ...(ii)   

On subtracting (i) from (ii), we get:
(p)d = (p - q)
 ⇒ d = -1
Putting d = -1 in (i), we get:
a = (p + q - 1)

Thus, a = (p + q - 1) and d = -1
 Now, Tp+q = a + (p + - 1)d
  =​ (p + q - 1) + (p + - 1)(-1) 
  = (p + q - 1) - (p + - 1) = 0 ​
                                              

 ​Hence, the (p+q)th term is 0 (zero).

Leave a comment