Question:
If the points (k, 2k), (3k, 3k) and (3, 1) are collinear, thenĀ k
(a) $\frac{1}{3}$
(b) $-\frac{1}{3}$
(c) $\frac{2}{3}$
(d) $-\frac{2}{3}$
Solution:
We have three collinear points $\mathrm{A}(k, 2 k) ; \mathrm{B}(3 k, 3 k) ; \mathrm{C}(3,1)$.
In general if $\mathrm{A}\left(x_{1}, y_{1}\right) ; \mathrm{B}\left(x_{2}, y_{2}\right) ; \mathrm{C}\left(x_{3}, y_{3}\right)$ are collinear then, area of the triangle is 0 .
$x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0$
So,
$k(3 k-1)+3 k(1-2 k)+3(2 k-3 k)=0$
So,
$-3 k^{2}-k=0$
Take out the common terms,
$-k(3 k+1)=0$
Therefore,
$k=-\frac{1}{3}$
So the answer is (b)