Question:
If the points A(1, 2), O(0, 0) and C(a, b) are collinear, then
(a) a = b
(b) a = 2b
(c) 2a = b
(d) a + b = 0
Solution:
(c) 2a = b
The given points are A(1, 2), O(0, 0) and C(a, b).
Here, $\left(x_{1}=1, y_{1}=2\right),\left(x_{2}=0, y_{2}=0\right)$ and $\left(x_{3}=a, y_{3}=b\right)$
Points A, O and C are collinear.
$\Rightarrow x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0$
$\Rightarrow 1(0-b)+0(b-2)+a(2-0)=0$
$\Rightarrow-b+2 a=0$
$\Rightarrow 2 a=b$