Question:
If the point P(x, y) is equidistant from the points A(5, 1) and B(− 1, 5), prove that 3x = 2y.
Solution:
As per the question, we have
$A P=B P$
$\Rightarrow \sqrt{(x-5)^{2}+(y-1)^{2}}=\sqrt{(x+1)^{2}+(y-5)^{2}}$
$\Rightarrow(x-5)^{2}+(y-1)^{2}=(x+1)^{2}+(y-5)^{2} \quad$ (Squaring both sides)
$\Rightarrow x^{2}-10 x+25+y^{2}-2 y+1=x^{2}+2 x+1+y^{2}-10 y+25$
$\Rightarrow-10 x-2 y=2 x-10 y$
$\Rightarrow 8 y=12 x$
$\Rightarrow 3 x=2 y$
Hence, 3x = 2y.