Question:
If the point P(2, 2) is equidistant from the points A(−2, k) and B(−2k, −3), find k. Also find the length of AP.
Solution:
As per the question, we have
$A P=B P$
$\Rightarrow \sqrt{(2+2)^{2}+(2-k)^{2}}=\sqrt{(2+2 k)^{2}+(2+3)^{2}}$
$\Rightarrow \sqrt{(4)^{2}+(2-k)^{2}}=\sqrt{(2+2 k)^{2}+(5)^{2}}$
$\Rightarrow 16+4+k^{2}-4 k=4+4 k^{2}+8 k+25 \quad$ (Squaring both sides)
$\Rightarrow k^{2}+4 k+3=0$
$\Rightarrow(k+1)(k+3)=0$
$\Rightarrow k=-3,-1$
Now for $k=-1$
$A P=\sqrt{(2+2)^{2}+(2-k)^{2}}$
$=\sqrt{(4)^{2}+(2+1)^{2}}$
$=\sqrt{16+9}=5$ units
For $k=-3$
$A P=\sqrt{(2+2)^{2}+(2-k)^{2}}$
$=\sqrt{(4)^{2}+(2+3)^{2}}$
$=\sqrt{16+25}=\sqrt{41}$ units
Hence, $k=-1,-3 ; A P=5$ units for $k=-1$ and $A P=\sqrt{41}$ units for $k=-3$.