If the point of intersections of the ellipse

Question:

If the point of intersections of the ellipse

$\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the circle $x^{2}+y^{2}=4 b, b>4$

lie on the curve $y^{2}=3 x^{2}$, then $b$ is equal to:

  1. 12

  2. 5

  3. 6

  4. 10


Correct Option: 1

Solution:

$y^{2}=3 x^{2}$

and $x^{2}+y^{2}=4 b$

Solve both we get

so $\quad x^{2}=b$

$\frac{x^{2}}{16}+\frac{3 x^{2}}{b^{2}}=1$

$\frac{b}{16}+\frac{3}{b}=1$

$b^{2}-16 b+48=0$

$(b-12)(b-4)=0$

$\mathrm{b}=12, \mathrm{~b}>4$

Leave a comment