Question:
If the origin is the centroid of triangle ABC with vertices A(a, 1, 3), B(-2, b, - 5) and C(4, 7, c), find the values of a, b, c.
Solution:
Since, centroid of a triangle is found by
$\left(\frac{x_{2}+x_{1}+x_{1}}{3}, \frac{y_{2}+y_{1}+y_{2}}{3}, \frac{z_{2}+z_{1}+z_{3}}{3}\right)$
The points are $A(a, 1,3)$ and $B(-2, b,-5)$, and its centroid is $(0,0,0)$ and its third vertex $\mathrm{C}(4,7, \mathrm{c})$.
Using the formula, we get
$=\left(\frac{-2+4+a}{3}, \frac{1+7+b}{3}, \frac{3-5+c}{3}\right)$
$=\left(\frac{2+a}{3}, \frac{8+b}{3}, \frac{-2+c}{3}\right)$
Equating it with the coordinates of centroid, we get
$0=\frac{2+a}{3}$
$a=-2$
$0=\frac{8+b}{3}$
$b=-8$
and,
$\frac{-2+c}{3}=0$
c = 2
therefore, $a=-2, b=-8, c=2$.