Question:
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
Solution:
Given:
nth term of the A.P. 9, 7, 5... is the same as the nth term of the A.P. 15, 12, 9...
Considering $9,7,5 \ldots$
$a=9, d=(7-9)=-2$
$\mathrm{n}^{\text {th }}$ term $=9+(n-1)(-2) \quad\left[a_{n}=a+(n-1) d\right]$
$=9-2 n+2$
$=11-2 n \quad \ldots(\mathrm{i})$
Considering $15,12,9, \ldots$
$a=15, d=(12-15)=-3$
$n^{\text {th }}$ term $=15+(n-1)(-3) \quad\left[a_{n}=a+(n-1) d\right]$
$=15-3 n+3$
$=18-3 n \ldots$ (ii)
Equating (i) and (ii), we get:
$11-2 n=18-3 n$
$\Rightarrow n=7$
Thus, 7th terms of both the A.P.s are the same.