Question.
If the non-parallel sides of a trapezium are equal, prove that it is cyclic.
Solution:
Consider a trapezium $A B C D$ with $A B|| C D$ and $B C=A D$.
Draw AM $\perp C D$ and BN $\perp C D$.
In $\triangle \mathrm{AMD}$ and $\triangle \mathrm{BNC}$,
$A D=B C$ (Given)
$\angle \mathrm{AMD}=\angle \mathrm{BNC}\left(\right.$ By construction, each is $\left.90^{\circ}\right)$
$\mathrm{AM}=\mathrm{BN}$ (Perpendicular distance between two parallel lines is same)
$\therefore \triangle \mathrm{AMD} \cong \triangle \mathrm{BNC}(\mathrm{RHS}$ congruence rule $)$
$\therefore \angle \mathrm{ADC}=\angle \mathrm{BCD}(\mathrm{CPCT}) \ldots(1)$
$\angle B A D$ and $\angle A D C$ are on the same side of transversal $A D$. $\angle B A D+\angle A D C=180^{\circ} \ldots(2)$
$\angle B A D+\angle B C D=180^{\circ}[$ Using equation (1) $]$
This equation shows that the opposite angles are supplementary.
Therefore, ABCD is a cyclic quadrilateral.
Consider a trapezium $A B C D$ with $A B|| C D$ and $B C=A D$.
Draw AM $\perp C D$ and BN $\perp C D$.
In $\triangle \mathrm{AMD}$ and $\triangle \mathrm{BNC}$,
$A D=B C$ (Given)
$\angle \mathrm{AMD}=\angle \mathrm{BNC}\left(\right.$ By construction, each is $\left.90^{\circ}\right)$
$\mathrm{AM}=\mathrm{BN}$ (Perpendicular distance between two parallel lines is same)
$\therefore \triangle \mathrm{AMD} \cong \triangle \mathrm{BNC}(\mathrm{RHS}$ congruence rule $)$
$\therefore \angle \mathrm{ADC}=\angle \mathrm{BCD}(\mathrm{CPCT}) \ldots(1)$
$\angle B A D$ and $\angle A D C$ are on the same side of transversal $A D$. $\angle B A D+\angle A D C=180^{\circ} \ldots(2)$
$\angle B A D+\angle B C D=180^{\circ}[$ Using equation (1) $]$
This equation shows that the opposite angles are supplementary.
Therefore, ABCD is a cyclic quadrilateral.