If the mean of observation x1, x2,

Question:

If the mean of observation $x_{1}, x_{2}, \ldots, x_{n}$ is $\bar{x}$, then the mean of $x_{1}+a, x_{2}+a_{1} \ldots \ldots, x_{n}+a$ is

(a) $a \bar{x}$

(b) $\bar{x}-a$

(c) $\bar{x}+a$

(d) $\frac{\bar{x}}{a}$

Solution:

The mean of $x_{1}, x_{2}, \ldots, x_{n}$ is $\bar{x}$.

$\therefore \frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}=\bar{x}$

$\Rightarrow x_{1}+x_{2}+x_{3}+\ldots+x_{n}=n \bar{x}$

Mean of $x_{1}+a_{1} x_{2}+a, \ldots, x_{n}+a$

$=\frac{\left(x_{1}+a\right)+\left(x_{2}+a\right)+\left(x_{3}+a\right)+\ldots+\left(x_{n}+a\right)}{n}$

$=\frac{\left(x_{1}+x_{2}+x_{3}+\ldots+x_{n}\right)+(a+a+a+\ldots+a)}{n}$

$=\frac{n \bar{x}+n a}{n}$

$=\bar{x}+a$

Hence, the correct option is (c).

 

Leave a comment