Question:
If the mean of five observations x, x + 2, x + 4, x + 6, x + 8 is 13, find the value of x and hence find the mean of the last three observations.
Solution:
We know that,
Mean $=\frac{\text { Sum of observa tions }}{\text { Number of observations }}$
The first five observations are x, x + 2, x + 4, x + 6 and x + 8.
Mean of these numbers $=\frac{x+(x+2)+(x+4)+(x+6)+(x+8)}{5}$
$\Rightarrow 13=\frac{5 x+20}{5}$
$\Rightarrow 13 \times 5=5 x+20$
$\Rightarrow 65=5 x+20$
$\Rightarrow 5 x=65-20$
$\Rightarrow 5 x=45$
$\Rightarrow x=\frac{45}{5}$
$\Rightarrow x=9$
Hence, the value of x is 9.
Now, the last three observations are 13, 15 and 17.
Mean of these observations $=\frac{13+15+17}{3}$
$=\frac{45}{3}$
$=15$
Hence, the mean of the last three observations is 15.