If the mean and variance of the following data: 6, 10, 7, 13, a, 12, b, 12
are 9 and $\frac{37}{4}$ respectively, then $(a-b)^{2}$ is equal to:
Correct Option: , 4
Mean $=\frac{6+10+7+13+a+12+b+12}{8}=9$
$60+a+b=72$
$a+b=12$ ......(1)
variance $=\frac{\sum x_{i}^{2}}{n}-\left(\frac{\sum x_{i}}{n}\right)^{2}=\frac{37}{4}$
$\Sigma x_{i}^{2}=6^{2}+10^{2}+7^{2}+13^{2}+a^{2}+b^{2}+12^{2}+12^{2}$
$=a^{2}+b^{2}+642$
$\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+642}{8}-(9)^{2}=\frac{37}{4}$
$\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{8}+\frac{321}{4}-81=\frac{37}{4}$
$\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{8}=81+\frac{37}{4}-\frac{321}{4}$
$\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{8}=81-71$
$\therefore \mathrm{a}^{2}+\mathrm{b}^{2}=80$ ....(2)
From (1) $a^{2}+b^{2}+2 a b=144$
$80+2 a b=144 \quad \therefore 2 a b=64$
$(a-b)^{2}=a^{2}+b^{2}-2 a b=80-64=16$