Question:
If the matrix $A=\left[\begin{array}{ccc}1 & 3 & x+2 \\ 2 & 4 & 8 \\ 3 & 5 & 10\end{array}\right]$ is singular, then $x=$_______
Solution:
Given: The matrix $A=\left[\begin{array}{ccc}1 & 3 & x+2 \\ 2 & 4 & 8 \\ 3 & 5 & 10\end{array}\right]$ is singular
$A$ is singular $\Rightarrow|A|=0$ Thus,
$\left|\begin{array}{ccc}1 & 3 & \mathrm{x}+2 \\ 2 & 4 & 8 \\ 3 & 5 & 10\end{array}\right|=0$
$\Rightarrow 1(40-40)-3(20-24)+(\mathrm{x}+2)(10-12)=0$
$\Rightarrow 1(0)-3(-4)+(\mathrm{x}+2)(-2)=0$
$\Rightarrow 12-2 \mathrm{x}-4=0$
$\Rightarrow 8-2 \mathrm{x}=0$
$\Rightarrow 2 \mathrm{x}=8$
$\Rightarrow \mathrm{x}=4$
Hence, $x=\underline{4}$.