If the magnetic field of a plane electromagnetic wave is given by

Question:

If the magnetic field of a plane electromagnetic wave is given by (The speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )

$\mathrm{B}=100 \times 10^{-6} \sin \left[2 \pi \times 2 \times 10^{15}\left(\mathrm{t}-\frac{x}{\mathrm{c}}\right)\right]$

then the maximum electric field associated with it is:

 

  1. (1) $6 \times 10^{4} \mathrm{~N} / \mathrm{C}$

  2. (2) $3 \times 10^{4} \mathrm{~N} / \mathrm{C}$

  3. (3) $4 \times 10^{4} \mathrm{~N} / \mathrm{C}$

  4. (4) $4.510^{4} \mathrm{~N} / \mathrm{C}$


Correct Option: , 2

Solution:

(2) Using, formula $\mathrm{E}_{0}=\mathrm{B}_{0} \times \mathrm{C}$

$=100 \times 10^{-6} \times 3 \times 10^{8}$

$=3 \times 10^{4} \mathrm{~N} / \mathrm{C}$

Here we assumed that

$\mathrm{B}_{0}=100 \times 10^{-6}$ is in tesla $(\mathrm{T})$ units

Leave a comment