Question:
If the locus of the mid-point of the line segment from the point $(3,2)$ to a point on the circle, $x^{2}+y^{2}=1$ is a circle of radius $r$, then $r$ is equal to :
Correct Option: , 2
Solution:
$h=\frac{\cos \theta+3}{2}$c
$\mathrm{k}=\frac{\sin \theta+2}{2}$
$\Rightarrow\left(\mathrm{h}-\frac{3}{2}\right)^{2}+(\mathrm{k}-1)^{2}=\frac{1}{4}$.
$\Rightarrow \mathrm{r}=\frac{1}{2}$