If the line y = √3x + k touches the circle x2 + y2 = 16, then find the value of k.
Since, the equation of a circle having centre $(h, k)$, having radius as $r$ units, is
$(x-h)^{2}+(y-k)^{2}=r^{2}$
$(x-0)^{2}+(y-0)^{2}=4^{2}$
Perpendicular Distance between a point $(0,0) \&$ the line
$y=\sqrt{3} x+k$ or $\sqrt{3} x-y+k=0$
Perpendicular Distance (Between a point and line) $=$
Whereas the point is $\left(x_{1}, y_{1}\right)$ and the line is expressed as $a x+b y+c=0$
$D=\frac{\{|\sqrt{3}(0)+(0)(-1)+k|\}}{\sqrt{(\sqrt{3})^{2}+1^{2}}}=\frac{\{|k|\}}{\sqrt{3+1}}=\frac{\{k\}}{\sqrt{4}}=\frac{k}{2} \quad \frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$
$\frac{k}{2}=4$ (Radius $=4$, Given)
$k=8$
Hence, the required value of $k$ is $8 .$
Hence, the required value of k is 8.