If the length of the chord of the circle,

Question:

If the length of the chord of the circle, $x^{2}+y^{2}=r^{2}(r>0)$ along the line, $y-2 x=3$ is $r$, then $r^{2}$ is equal to:

  1. (1) $\frac{9}{5}$

  2. (2) 12

  3. (3) $\frac{24}{5}$

  4. (4) $\frac{12}{5}$


Correct Option: , 2

Solution:

In right $\triangle R S Q, \sin 60^{\circ}=\frac{R S}{r}$

$\Rightarrow R S=r \times \frac{\sqrt{3}}{2}=\frac{\sqrt{3} r}{2}$

Now equation of $P Q$ is $y-2 x-3=0$

$\therefore \frac{\sqrt{3} r}{2}=\frac{|0+0-3|}{\sqrt{5}}$

$\Rightarrow \frac{\sqrt{3} r}{2}=\frac{3}{\sqrt{5}} \Rightarrow r=\frac{2 \sqrt{3}}{5} \Rightarrow r^{2}=\frac{12}{5}$

Leave a comment