If the function f(x)=

Question:

If the function $f(x)= \begin{cases}\frac{\sqrt{2+\cos x}-1}{(\pi-x)^{2}}, & x \neq \pi \\ k \quad, & x=\pi\end{cases}$ is continuous at $x=\pi$, then $\mathrm{k}$ equals:-

  1. $\frac{1}{4}$

  2. $\frac{1}{2}$

  3. 2

  4. 0


Correct Option: 1

Solution:

Leave a comment