Question:
If the first, second and last term of an A.P. are a, b and 2a respectively, its sum is
(a) $\frac{a b}{2(b-a)}$
(b) $\frac{a b}{(b-a)}$
(c) $\frac{3 a b}{2(b-a)}$
(d) none of these
Solution:
In the given problem, we are given first, second and last term of an A.P. We need to find its sum.
So, here
First term = a
Second term (a2) = b
Last term (l) = 2a
Now, using the formula $a_{n}=a+(n-1) d$
$a_{2}=a+(2-1) d$
$b=a+d$
$d=b-a$ ...........(1)
Also,
$a_{n}=a+(n-1) d$
$2 a=a+n d-d$
$2 a-a=n d-d$
$\frac{a+d}{d}=n$ ...........(2)
Further as we know,
$S_{n}=\frac{n}{2}[a+l]$
Substituting (2) in the above equation, we get
Using (1), we get
$S_{n}=\frac{a+(b-a)}{2(b-a)}(3 a)$
$S_{n}=\frac{b}{2(b-a)}(3 a)$
Thus,
$S_{n}=\frac{3 a b}{2(b-a)}$
Therefore, the correct option is (c).