If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
(a) $\frac{a b}{2(b-a)}$
(b) $\frac{a b}{b-a}$
(c) $\frac{3 a b}{2(b-a)}$
(d) none of these
(c) $\frac{3 a b}{2(b-a)}$
Let the A.P. be a, a+d, a+2d........a+nd.
Here, let d be the common difference and n be the total number of terms.
Given:
$a_{1}=a$
$a_{2}=b$
$\Rightarrow a+d=b$
$\Rightarrow d=b-a$ ....(1)
$a_{n}=2 a$
$\Rightarrow a+(n-1) d=2 a$
$\Rightarrow(n-1) d=a$
$\Rightarrow d=\frac{a}{n-1} \quad \ldots . .(2)$
From equations $(1)$ and $(2)$, we have:
$\Rightarrow \frac{a}{n-1}=b-a$
$\Rightarrow \frac{a}{b-a}+1=n$
$\Rightarrow \frac{a+b-a}{b-a}=n$
$\Rightarrow \frac{b}{b-a}=n$
Now, sum of n terms of an A.P.:
$S=\frac{n}{2}\left\{a+a_{n}\right\}$
$=\frac{n}{2}(3 a)$
$=\frac{3 a b}{2(b-a)}$