If the equation

Question:

If the equation $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ has real solutions for $\theta$, then $\lambda$ lies in the interval :

  1. (1) $\left(-\frac{5}{4},-1\right)$

  2. (2) $\left[-1,-\frac{1}{2}\right]$

  3. (3) $\left(-\frac{1}{2},-\frac{1}{4}\right]$

  4. (4) $\left[-\frac{3}{2},-\frac{5}{4}\right]$


Correct Option: , 2

Solution:

$\sin ^{4} \theta+\cos ^{4} \theta=-\lambda$

$\Rightarrow\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cdot \cos ^{2} \theta=-\lambda$

$\Rightarrow 1-2 \sin ^{2} \theta \cos ^{2} \theta=-\lambda$

$\Rightarrow \lambda=\frac{(\sin 2 \theta)^{2}}{2}-1$

$\Rightarrow$ as $\sin ^{2} 2 \theta \in[0,1] \Rightarrow \lambda \in\left[-1, \frac{-1}{2}\right]$

Leave a comment