If the eccentricity of an ellipse is 5/8 and the distance between its foci is 10, then find latus rectum of the ellipse.
We know that equation of an ellipse
$=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Also we have
Length of latus rectum $=\frac{2 b^{2}}{a}$
Length of minor axis $=2 \mathrm{~b}$
$e=\frac{5}{8}$
We know that foci $=(\pm a e, 0)$
Given that distance between foci $=10$
$2 \mathrm{ae}=10$
$2 \times a \times \frac{5}{8}=10$
$a=8$
$b^{2}=a^{2}\left(1-e^{2}\right)$
$b^{2}=8^{2}\left(1-\left(\frac{5}{8}\right)^{2}\right)$
$b^{2}=8^{2}\left(1-\left(\frac{5}{8}\right)^{2}\right)$
On simplifying we get
$b^{2}=64\left(1-\frac{25}{64}\right)$
$b^{2}=64 \times \frac{39}{64}=39$
Length of Latus Rectum $=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=2 \times \frac{39}{8}=9.75$
Hence, the length of latus rectum is $9.75$ units.