If the distance between the foci of an

Question:

If the distance between the foci of an ellipse is 6 and the distance between its directrices is 12 , then the length of its latus rectum is:

  1. (1) $\sqrt{3}$

  2. (2) $3 \sqrt{2}$

  3. (3) $\frac{3}{\sqrt{2}}$

  4. (4) $2 \sqrt{3}$


Correct Option: , 2

Solution:

$2 a e=6$ and $\frac{2 a}{e}=12$

$\Rightarrow a e=3$ $\ldots$ (i)

and $\frac{a}{e}=6 \Rightarrow e=\frac{a}{6}$..(ii)

$\Rightarrow a^{2}=18 \quad$ [From (i) and (ii)]

$\Rightarrow \quad b^{2}=a^{2}-a^{2} e^{2}=18-9=9$

$\therefore \quad$ Latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{3 \sqrt{2}}=3 \sqrt{2}$

 

Leave a comment