If the derivative

Question:

If the derivative of $\tan ^{-1}(a+b x)$ takes the value 1 at $x=0$, prove that $1+a^{2}=b$.

Solution:

$y=\tan ^{-1}(a+b x)$

And $y^{\prime}(0)=1$

Now

$\frac{d y}{d x}=\frac{d}{d x}\left(\tan ^{-1}(a+b x)\right)$

$\frac{d y}{d x}=\frac{b}{1+(a+b x)^{2}}$

At $x=0$

$\frac{d y}{d x}=\frac{b}{1+(a+b(0))^{2}}$

$\frac{b}{1+a^{2}}=1$

$\Rightarrow b=1+a^{2}$

Leave a comment