If the curves, x squer/a + y squer/b = 1 and

Question:

If the curves, $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$ and $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$

intersect each other at an angle of $90^{\circ}$, then which of the following relations is TRUE?

  1. $a+b=c+d$

  2. $a-b=c-d$

  3. $a-c=b+d$

  4. $a b=\frac{c+d}{a+b}$


Correct Option: , 2

Solution:

For orthogonal curves $a-c=b-d$

$\Rightarrow a-b=c-d$

Leave a comment