Question:
If the curves $x=y^{4}$ and $x y=k$ cut at right angles, then $(4 k)^{6}$ is equal to
Solution:
$4 y^{3} \frac{d y}{d x}=1 \quad \& \quad x \frac{d y}{d x}+y=0$
$m_{1}=\frac{1}{4 y^{3}} \frac{d y}{d x}=\frac{-y}{x}=m_{2}$
$m_{1} m_{2}=-1$
$\frac{1}{4 \cdot y^{3}} \times \frac{-y}{x}=-1 \because x=y^{4}$
$\frac{1}{4 \cdot y^{6}}=1$ and $x y=k$
$y^{6}=\frac{1}{4}$
$\Rightarrow k^{6}=y^{30}$
$\Rightarrow k^{6}=\left(\frac{1}{4}\right)^{5}$
$\therefore(4 k)^{6}=4^{6} \times k^{6}=4$