If the curves, $x^{2}-6 x+y^{2}+8=0$ and $x^{2}-8 y+y^{2}+16-k=0$, $(k>0)$ touch each other at a point, then the largest value of $k$ is______.
The given equation of circle
$x^{2}-6 x+y^{2}+8=0$
$(x-3)^{2}+y^{2}=1$ .........(1)
So, centre of circle (1) is $C_{1}(3,0)$ and radius $r_{1}=1$.
And the second equation of circle
$x^{2}-8 y+y^{2}+16-k=0(k>0)$
$x^{2}+(y-4)^{2}=(\sqrt{k})^{2}$........(2)
So, centre of circle (2) is $C_{2}(0,4)$ and radius $r_{2}=\sqrt{k}$ Two circles touches each other when
$C_{1} C_{2}=\left|r_{1} \pm r_{2}\right| \quad \Rightarrow \quad 5=|1 \pm \sqrt{k}|$
Distance between $C_{2}(3,0)$ and $\mathrm{C}_{1}(0,4)$ is
either $\sqrt{k}+1$ or $|\sqrt{k}-1| \quad\left(C_{1} C_{2}=5\right)$
$\Rightarrow \quad \sqrt{k}+1=5 \quad$ or $\quad|\sqrt{k}-1|=5$
$\Rightarrow \quad k=16$ or $k=36$
Hence, maximum value of $k$ is 36
The given equation of circles
$x^{2}-6 x+y^{2}+8=0$
$\Rightarrow(x-3)^{2}+y^{2}=1$