If the coefficients of x7 and x8 in
(a) 56
(b) 55
(c) 45
(d) 15
In $(a+x)^{n}$
$T_{r+1}={ }^{n} C_{r} a^{n-r} x^{r}$
$\therefore \operatorname{In}\left(2+\frac{x}{3}\right)^{n}$
Coefficient of x7 is
$T_{8}={ }^{n} C_{7}(2)^{n-7}\left(\frac{x}{3}\right)^{7}$
$T_{8}={ }^{n} C_{7} \frac{2^{\text {n- }-} x^{7}}{3^{7}}$
and coefficient of x8 is
$T_{9}={ }^{n} C_{8}(2)^{n-8}\left(\frac{x}{3}\right)^{8}$
$T_{9}={ }^{n} C_{8} \frac{2^{n-8} x^{8}}{3^{8}}$
Since $T_{8}=T_{9}$ i.e coefficient of $T_{8}=$ coefficient of $T_{9}$
$\Rightarrow^{n} C_{7} \frac{2^{n-7}}{3^{7}}=\frac{{ }^{n} C_{8} 2^{n-8}}{3^{8}}$
$\Rightarrow \frac{n ! 2^{n-7}}{7 !(n-7) ! \times 3^{7}}=\frac{n ! \times 2^{n-8}}{8 !(n-8) ! \times 3^{8}}$
i. e. $\frac{8 !}{7 !} \frac{(n-8) !}{(n-7)(n-8) !}=\frac{2^{n-8}}{3 \times 2^{n-7}}$
i.e. $\frac{8}{n-7}=\frac{1}{6} \Rightarrow 48=n-7$
i. e. $n=55$
Hence, the correct answer is option B.